964 research outputs found

    Legal Responsibility for Public Library Development: United States, Canada, Scandinavia, Nigeria, and South Africa

    Get PDF
    published or submitted for publicatio

    Trace Complexity of Chaotic Reversible Cellular Automata

    Full text link
    Delvenne, K\r{u}rka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible Computation 2014 (proceedings published by Springer

    Mental health in medical and biomedical doctoral students during the 2020 COVID-19 pandemic and racial protests

    Get PDF
    Concerns about the mental health of students, trainees and staff at universities and medical schools have been growing for many years. Recently, these have been exacerbated by the COVID-19 pandemic and a period of heightened reckoning and protests about systemic racism in the United States in 2020. To better understand the mental health of medical students and biomedical doctoral students at the University of North Carolina at Chapel Hill during this challenging period, we performed a cross-sectional study (n=957) using institutional annual survey data on measures of depression, anxiety, hazardous alcohol use, problems related to substance use, and suicidal ideation. These data were collected in 2019 and 2020, and were analyzed by type of training program, race/ethnicity, gender, sexual orientation, and survey year. Results indicated significant differences for rates of depression, anxiety, and suicidal ideation, with biomedical doctoral students showing greater incidence than medical students, and historically excluded students (e.g., people of color, women, LGBQ+ trainees) showing greater incidence compared to their peers. Of note, mental health remained poor for biomedical doctoral students in 2020 and declined for those belonging to historically excluded populations. The high rates of depression, anxiety, and suicidal ideation reported suggest that training environments need to be improved and support for mental health increased

    A progressive refinement approach for the visualisation of implicit surfaces

    Get PDF
    Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting

    Discovery of a new Y dwarf: WISE J030449.03-270508.3

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [D. J. Pinfield, et al, Discovery of a new Y dwarf: WISE J030449.03−270508.3, MNRAS, Vol. 444 (2): 1931-1939, September 2014] is available online at: https://doi.org/10.1093/mnras/stu1540.We present a new Y dwarf, WISE J030449.03−270508.3, confirmed from a candidate sample designed to pick out low-temperature objects from the Wide-field Infrared Survey Explorer (WISE) data base. The new object is typed Y0pec following a visual comparison with spectral standards, and lies at a likely distance of 10–17 pc. Its tangential velocity suggests thin disc membership, but it shows some spectral characteristics that suggest that it may be metal poor and/or older than previously identified Y0 dwarfs. Based on trends seen for warmer late-type T dwarfs, the Y-band flux peak morphology is indicative of sub-solar metallicity, and the enhanced red wing of the J-band flux peak offers evidence for high gravity and/or low metallicity (with associated model trends suggesting an age closer to ∼10 Gyr and mass in the range 0.02–0.03 Mȯ). This object may thus be extending the population parameter space of the known Y0 dwarfs.Peer reviewe

    Impact of densitized lapse slicings on evolutions of a wobbling black hole

    Full text link
    We present long-term stable and second-order convergent evolutions of an excised wobbling black hole. Our results clearly demonstrate that the use of a densitized lapse function extends the lifetime of simulations dramatically. We also show the improvement in the stability of single static black holes when an algebraic densitized lapse condition is applied. In addition, we introduce a computationally inexpensive approach for tracking the location of the singularity suitable for mildly distorted black holes. The method is based on investigating the fall-off behavior and asymmetry of appropriate grid variables. This simple tracking method allows one to adjust the location of the excision region to follow the coordinate motion of the singularity.Comment: 10 pages, 8 figure

    Atomic spectrometry update: a review of advances in environmental analysis

    Get PDF
    This is the 33th annual review of the application of atomic spectrometry to the chemical analysis of environmental samples. This update refers to papers published approximately between August 2016 and June 2017 and continues the series of Atomic Spectrometry Updates (ASUs) in environmental analysis that should be read in conjunction with other related ASUs in the series, namely: clinical and biological materials, foods and beverages; advances in atomic spectrometry and related techniques; elemental speciation; X-ray spectrometry; and metals, chemicals and functional materials. In the field of air analysis, highlights within this review period included the fabrication of new air samplers using 3D printer technology, development of a portable aerosol concentrator unit based upon electrostatic precipitation and instrumental developments such as a prototype portable spark emission spectrometer to quantify metal particles in workplace air. The advent of ICP-MS/MS systems has enabled analysts to develop improved methods for the determination of PGEs and radioactive elements present in airborne particles. With such instruments, the capacity to eliminate or minimise many isobaric interferences now enables analysts to forego the use of many onerous sample clean-up procedures. Improvements in the capabilities of aerosol mass spectrometers were noted as were developments in other complimentary measurement techniques such as Raman. In the arena of water analysis there are growing concerns regarding engineered NPs e.g. Ag NPs, entering water courses resulting in the development and optimisation of new methods based upon FFF and sp-ICP-MS techniques to measure such inputs. Similar concerns exist for MRI contrasting agents e.g. Gd-based compounds and here improved methodologies that involve the use of sample preconcentration using chelating columns and ICP-MS analysis have been proposed. In the field of plant and soil analysis, similar to developments in the water sector, there has been increased interest in the measurement of NPs. Many comparisons of sample digestion or extraction methods have been reported but a key issue rarely addressed is transferability, i.e. whether methods preferred by one group of researchers using particular apparatus are also optimal in a different laboratory using different apparatus. New sample preconcentration methods continued to appear although – as in previous years – the CRMs selected for method validation often failed to reflect the nature of the intended sample(s). A noteworthy advance is the use of HR-CS-ETMAS for elemental analysis. Developments in LIBS included greater use of TEA CO2 lasers in place of Nd:YAG lasers and increased use of stand-off measurement. The past year has also seen a rise in proximal sensing using LIBS and pXRFS. In the field of geological analysis, the quest continues for well-characterised matrix-matched materials suitable for the calibration of elemental and, particularly, isotopic measurements by microanalytical techniques. Increasing interest in stable isotope analysis by SIMS is reflected by the number of matrix-matched RMs developed specifically for this technique. Much work continues on ways of improving isotope ratio measurements by ICP-MS and TIMS for a wide range of different isotope systems relevant to geochemical studies. High spatial resolution analysis by LIBS, LA-ICP-MS and SIMS to obtain data on chemical and isotopic variations in minerals and biogenic materials in two and three dimensions are the foundation for many new insights in geoscientific research. In XRFS and LIBS, the advantages and limitations of portable instrumentation continue to be major focus of activity

    Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations

    Get PDF
    We present a new many-parameter family of hyperbolic representations of Einstein's equations, which we obtain by a straightforward generalization of previously known systems. We solve the resulting evolution equations numerically for a Schwarzschild black hole in three spatial dimensions, and find that the stability of the simulation is strongly dependent on the form of the equations (i.e. the choice of parameters of the hyperbolic system), independent of the numerics. For an appropriate range of parameters we can evolve a single 3D black hole to t≃600Mt \simeq 600 M -- 1300M1300 M, and are apparently limited by constraint-violating solutions of the evolution equations. We expect that our method should result in comparable times for evolutions of a binary black hole system.Comment: 11 pages, 2 figures, submitted to PR
    • …
    corecore